
rsyncd.conf 파일은 rsync 데몬으로 실행할 때 rsync를 위한 런타임 구성 파일입니다 .

rsyncd.conf 파일은 인증 , 액세스 , 로깅 및 사용 가능한 모듈을 제어합니다 .

파일은 모듈과 매개변수로 구성됩니다 . 모듈은 대괄호 안의 모듈 이름으로 시작하여 다음 모듈이 시작될
때까지 계속됩니다 . 모듈에는 name = value 형식의 매개변수가 포함됩니다 .

파일은 줄 기반이며 , 줄 바꿈으로 끝나는 각 줄은 주석 , 모듈 이름 또는 매개변수를 나타냅니다 .

매개변수에서 첫 번째 등호만 의미가 있습니다 . 첫 번째 등호 앞뒤의 공백은 무시됩니다 . 모듈 및 매개변수
이름의 선행 공백 , 후행 공백 , 내부 공백은 상관없습니다 . 매개변수 값의 선행 공백과 후행 공백은 무시됩니다 .
매개변수 값 내의 내부 공백은 그대로 유지됩니다 .

해시 (#)로 시작하는 줄은 공백만 포함된 줄과 마찬가지로 무시됩니다 . (선행 공백 이외의 다른 공백 뒤에
해시가 오는 경우 해당 해시는 줄 내용의 일부로 간주됩니다 .)

\ 로 끝나는 줄은 일반적인 UNIX 방식에 따라 다음 줄에서 "계속 "됩니다 .

매개변수에서 등호 뒤에 오는 값은 모두 문자열 (따옴표가 필요 없음) 또는 부울이며 , yes/no, 0/1 또는
true/false으로 지정할 수 있습니다 . 대소문자는 부울 값에서는 중요하지 않지만 문자열 값에서는 유지됩니다 .

LAUNCHING THE RSYNC DAEMON

rsync 데몬은 --daemon 옵션을 지정하여 실행합니다 .

chroot를 사용하거나 , 1024 미만의 포트 (기본값은 873)에 바인딩하거나 , 파일 소유권을 설정하려면 데몬이
루트 권한으로 실행되어야 합니다 . 그렇지 않으면 적절한 데이터 읽기 및 쓰기 권한 , 로그 및 파일 잠금 권한만
있으면 됩니다 .

독립 실행형 데몬으로 inetd를 통해 실행하거나 원격 셸을 통해 rsync 클라이언트에서 실행할 수 있습니다 .
독립 실행형 데몬으로 실행하려면 적절한 시작 스크립트에서 "rsync --daemon" 명령을 실행하면 됩니다 .

inetd를 통해 실행하는 경우 /etc/services에 다음과 같은 줄을 추가해야 합니다 :

 rsync 873/tcp

그리고 /etc/inetd.conf에 다음과 같이 한 줄을 추가합니다 :

rsyncd.conf (작업중)

FILE FORMAT

 rsync stream tcp nowait root /usr/bin/rsync rsyncd --daemon

"/usr/bin/rsync"를 시스템에 rsync를 설치한 위치의 경로로 바꿉니다 . 그런 다음 구성 파일을 다시 읽으라는
HUP 신호를 inetd에 보내야 합니다 .

rsync 데몬에 HUP 신호를 보내서 rsyncd.conf 파일을 강제로 다시 읽도록 해서는 안 됩니다 . 이 파일은 각
클라이언트 연결 시마다 다시 읽습니다 .

파일의 첫 번째 매개변수 ([모듈] 헤더 앞)는 전역 매개변수입니다 :

이 매개변수를 사용하면 연결할 때마다 클라이언트에게 표시할 '오늘의 메시지 '(MOTD)를 지정할 수 있습니다 .
여기에는 일반적으로 사이트 정보 및 법적 고지가 포함됩니다 . 기본값은 MOTD 파일 없음입니다 . 이는 데몬을
시작할 때 --dparam=motdfile=FILE 명령줄 옵션으로 재정의할 수 있습니다 .

이 매개변수는 해당 파일에 프로세스 ID를 쓰도록 rsync 데몬에 지시합니다 . rsync는 기존 파일을 덮어쓰기에
안전한 시기를 알 수 있도록 파일을 잠근 상태로 유지합니다 . 파일 이름은 데몬을 시작할 때 --
dparam=pidfile=FILE 명령줄 옵션으로 재정의할 수 있습니다 .

이 값을 지정하여 데몬이 수신 대기할 기본 포트를 재정의할 수 있습니다 (기본값은 873). 이 값은 데몬이
inetd로 실행되는 경우 무시되며 --port 명령줄 옵션으로 대체됩니다 .

이 값을 지정하여 데몬이 수신 대기할 기본 IP 주소를 재정의할 수 있습니다 . 이 값은 데몬이 inetd로 실행되는
경우 무시되며 --address 명령줄 옵션으로 대체됩니다 .

이 매개변수는 시스템을 최대한으로 튜닝하고 싶어하는 사람들에게 끝없는 재미를 선사할 수 있습니다 . 전송
속도를 높이거나 낮출 수 있는 모든 종류의 소켓 옵션을 설정할 수 있습니다 . 설정할 수 있는 몇 가지 옵션에
대한 자세한 내용은 setsockopt() 시스템 호출에 대한 매뉴얼 페이지를 참조하세요 . 기본적으로 특별한 소켓
옵션은 설정되어 있지 않습니다 . 이러한 설정은 --sockopts 명령줄 옵션을 통해서도 지정할 수 있습니다 .

데몬이 연결을 수신 대기할 때 기본 백로그 값을 재정의할 수 있습니다 . 기본값은 5입니다 .

GLOBAL PARAMETERS

motd file

pid file

port

address

socket options

listen backlog

구성 파일의 전역 부분에 MODULE PARAMETERS를 포함할 수도 있으며 , 이 경우 제공된 값이 해당
매개변수의 기본값을 재정의합니다 .

매개변수 값에 환경 변수에 대한 참조를 사용할 수 있습니다 . 문자열 매개변수는 가능한 한 늦게 (프로그램에서
문자열이 처음 사용될 때) %VAR% 참조가 확장되어 RSYNC_USER_NAME과 같이 연결 시 rsync가 설정하는
변수를 사용할 수 있습니다 . 문자열이 아닌 매개변수 (예 : true/false 설정)는 구성 파일에서 읽을 때
확장됩니다 . 변수가 환경에 존재하지 않거나 문자 시퀀스가 유효한 참조가 아닌 경우 (예 : 짝을 이루지 않은
퍼센트 기호) 원시 문자가 변경되지 않고 전달됩니다 .

이는 이전 버전과의 호환성 및 안전성에 도움이 됩니다 (예 : 존재하지 않는 %VAR%를 경로의 빈 문자열로
확장하면 매우 안전하지 않은 경로가 될 수 있음). 값에 리터럴 %를 삽입하는 가장 안전한 방법은 %%를
사용하는 것입니다 .

전역 매개변수 뒤에 여러 개의 모듈을 정의해야 하며 , 각 모듈은 디렉토리 트리를 기호 이름으로 내보냅니다 .
모듈은 대괄호 [module] 안에 모듈 이름을 지정하고 그 뒤에 해당 모듈의 매개변수를 지정하여 내보냅니다 .
모듈 이름에는 슬래시나 닫는 대괄호를 포함할 수 없습니다 . 이름에 공백이 포함되어 있으면 내부 공백의 각
순서가 단일 공백으로 변경되고 선행 또는 후행 공백은 삭제됩니다 .

모듈을 정의하지 않고 대신 기본 매개변수를 지정할 수 있는 전역 설정 컨텍스트로 다시 전환하는 특수 모듈
이름인 "[global]"도 있습니다 . 정의된 각 모듈은 설정 파일의 해당 위치에 설정된 기본값과 자체 매개변수
목록의 조합으로 전체 매개변수 집합을 가져오기 때문에 "[global]" 섹션을 사용하면 여러 모듈의 공유 설정
값을 유지하는 데 도움이 될 수 있습니다 .

GLOBAL PARAMETERS와 마찬가지로 매개변수 값에 환경 변수에 대한 참조를 사용할 수 있습니다 . 자세한
내용은 해당 섹션을 참조하세요 .

이 매개 변수는 클라이언트가 사용 가능한 모듈 목록을 가져올 때 모듈 이름 옆에 표시되는 설명 문자열을
지정합니다 . 기본값은 설명 없음입니다 .

이 매개변수는 이 모듈에서 사용할 수 있도록 데몬의 파일 시스템에서 디렉터리를 지정합니다 . 각 모듈에 대해
이 파라미터를 rsyncd.conf에 지정해야 합니다 .

값에 "/./" 요소가 포함되어 있으면 해당 지점에서 경로가 루트 디렉터리와 내부 루트 하위 디렉터리로
나뉩니다 . 그러나 use chroot가 false로 설정되어 있으면 경로에서 불필요한 dot dir이 그냥 정리됩니다 . 이
관용구의 예는 다음과 같습니다 :

 path = /var/rsync/./module1

이렇게 하면 (chroot 시) "/var/rsync"로 chroot되고 내부 chroot 경로가 "/module1"로 설정됩니다 .

MODULE PARAMETERS

comment

path

변수 이름을 퍼센트 기호로 둘러싸서 환경 변수를 기준으로 경로 값을 설정할 수 있습니다 . 사용자가 연결할 때
rsync에 의해 설정된 변수를 참조할 수도 있습니다 . 예를 들어 , 경로에 인증 사용자의 이름을 사용합니다 :

 path = /home/%RSYNC_USER_NAME%

경로에 내부 공백이 포함되어 있어도 괜찮습니다 . 공백은 그대로 유지되므로 공백을 이스케이프하려고 하면
안 됩니다 . 최종 디렉터리에 후행 공백이 있는 경우 (수정하고 싶지 않은 경우) 경로에 후행 슬래시를 추가하여
후행 공백이 손실되지 않도록 하세요 .

"use chroot"가 참이면 , rsync 데몬은 클라이언트와 파일 전송을 시작하기 전에 "path"로 루팅합니다 . 이
방법은 구현상의 보안 허점을 방지할 수 있다는 장점이 있지만 , 수퍼유저 권한이 필요하고 , 절대적이거나 새
루트 경로를 벗어난 심볼릭 링크를 따라갈 수 없으며 , 이름별 사용자 및 그룹 보존이 복잡해진다는 단점이
있습니다 (아래 참조).

use chroot가 설정되지 않은 경우 , 기본값은 기본적으로 chroot 활성화를 시도하지만 실패하면 (경고를
로깅한 후) 데몬이 계속할 수 있도록 허용합니다 . 한 가지 예외는 모듈의 경로에 "/./" chroot 구분자가 있는
경우로 , 이 경우 설정되지 않은 값이 해당 모듈에 대해 참으로 취급됩니다 .

rsync 3.2.7 이전에는 기본값이 "true"였습니다 . 새로운 기본값인 "unset"을 사용하면 루트 사용자가 아닌
사용자로 rsync 데몬을 설정하거나 chroot 설정이 실패한 시스템에서 데몬을 실행하기가 더 쉬워집니다 .
rsyncd.conf에서 이 값을 "true"로 명시적으로 설정하면 언제나 chroot가 성공해야 합니다 .

모듈의 "path"에 dot-dir을 지정하여 경로의 앞부분에 chdir을 지정한 다음 경로의 뒷부분에 있는 파일을
서비스할 수 있습니다 (sanitizing 및 기본 symlink munging 사용). 이 방법은 chroot 내부에 일부 라이브러리
디렉터리가 필요하지만 (일반적으로 uid 및 gid 조회를 위해) lib 디렉터리를 서비스되는 경로의 맨 위에 넣고
싶지 않은 경우 유용할 수 있습니다 (제외 지시어로 숨길 수 있지만). 그러나 최신 rsync 설정에서 더 나은
선택은 이름 변환기를 사용하는 것 "이며 내부 lib 디렉터리를 완전히 피하는 것입니다 . 또한 경로와 관련된
chroot을 수행하기 전에 rsync가 자체 chroot 영역으로 chroot하도록 하는 데몬 chroot 매개변수를
참조하세요 .

데몬이 "/" 디렉터리를 서비스하는 경우 (직접적으로 또는 모듈의 경로에 루팅되어 있기 때문에), rsync는 경로
sanitizing 또는 (기본값인) munging을 수행하지 않습니다 .

 When it has to limit access to a particular subdir (either due to chroot being disabled or having
an inside-chroot path set), rsync will munge symlinks (by default) and sanitize paths. Those that
dislike munged symlinks (and really, really trust their users to not break out of the subdir) can
disable the symlink munging via the "munge symlinks" parameter.

 When rsync is sanitizing paths, it trims ".." path elements from args that it believes would
escape the module hierarchy. It also substitutes leading slashes in absolute paths with the
module's path (so that options such as --backup-dir & --compare-dest interpret an absolute path as
rooted in the module's "path" dir).

 When a chroot is in effect and the "name converter" parameter is not set, the "numeric ids"
parameter will default to being enabled (disabling name lookups). This means that if you manually

use chroot

setup name-lookup libraries in your chroot (instead of using a name converter) that you need to
explicitly set numeric ids = false for rsync to do name lookups.

 If you copy library resources into the module's chroot area, you should protect them through
your OS's normal user/group or ACL settings (to prevent the rsync module's user from being able to
change them), and then hide them from the user's view via "exclude" (see how in the discussion of
that parameter). However, it's easier and safer to setup a name converter.
daemon chroot

 This parameter specifies a path to which the daemon will chroot before beginning
communication with clients. Module paths (and any "use chroot" settings) will then be related to
this one. This lets you choose if you want the whole daemon to be chrooted (with this setting), just
the transfers to be chrooted (with "use chroot"), or both. Keep in mind that the "daemon chroot"
area may need various OS/lib/etc files installed to allow the daemon to function. By default the
daemon runs without any chrooting.
proxy protocol

 When this parameter is enabled, all incoming connections must start with a V1 or V2 proxy
protocol header. If the header is not found, the connection is closed.

 Setting this to true requires a proxy server to forward source IP information to rsync, allowing
you to log proper IP/host info and make use of client-oriented IP restrictions. The default of false
means that the IP information comes directly from the socket's metadata. If rsync is not behind a
proxy, this should be disabled.

 CAUTION: using this option can be dangerous if you do not ensure that only the proxy is allowed
to connect to the rsync port. If any non-proxied connections are allowed through, the client will be
able to use a modified rsync to spoof any remote IP address that they desire. You can lock this
down using something like iptables -uid-owner root rules (for strict localhost access), various
firewall rules, or you can require password authorization so that any spoofing by users will not
grant extra access.

 This setting is global. If you need some modules to require this and not others, then you will
need to setup multiple rsync daemon processes on different ports.
name converter

 This parameter lets you specify a program that will be run by the rsync daemon to do user &
group conversions between names & ids. This script is started prior to any chroot being setup, and
runs as the daemon user (not the transfer user). You can specify a fully qualified pathname or a
program name that is on the $PATH.

 The program can be used to do normal user & group lookups without having to put any extra
files into the chroot area of the module or you can do customized conversions.

 The nameconvert program has access to all of the environment variables that are described in
the section on pre-xfer exec. This is useful if you want to customize the conversion using
information about the module and/or the copy request.

 There is a sample python script in the support dir named "nameconvert" that implements the
normal user & group lookups. Feel free to customize it or just use it as documentation to
implement your own.
numeric ids

 Enabling this parameter disables the mapping of users and groups by name for the current
daemon module. This prevents the daemon from trying to load any user/group-related files or
libraries. This enabling makes the transfer behave as if the client had passed the --numeric-ids
command-line option. By default, this parameter is enabled for chroot modules and disabled for
non-chroot modules. Also keep in mind that uid/gid preservation requires the module to be running
as root (see "uid") or for "fake super" to be configured.

 A chroot-enabled module should not have this parameter set to false unless you're using a
"name converter" program or you've taken steps to ensure that the module has the necessary
resources it needs to translate names and that it is not possible for a user to change those
resources.
munge symlinks

 This parameter tells rsync to modify all symlinks in the same way as the (non-daemon-affecting)
--munge-links command-line option (using a method described below). This should help protect
your files from user trickery when your daemon module is writable. The default is disabled when
"use chroot" is on with an inside-chroot path of "/", OR if "daemon chroot" is on, otherwise it is
enabled.

 If you disable this parameter on a daemon that is not read-only, there are tricks that a user can
play with uploaded symlinks to access daemon-excluded items (if your module has any), and, if
"use chroot" is off, rsync can even be tricked into showing or changing data that is outside the
module's path (as access-permissions allow).

 The way rsync disables the use of symlinks is to prefix each one with the string "/rsyncd-
munged/". This prevents the links from being used as long as that directory does not exist. When
this parameter is enabled, rsync will refuse to run if that path is a directory or a symlink to a
directory. When using the "munge symlinks" parameter in a chroot area that has an inside-chroot
path of "/", you should add "/rsyncd-munged/" to the exclude setting for the module so that a user
can't try to create it.

 Note: rsync makes no attempt to verify that any pre-existing symlinks in the module's hierarchy
are as safe as you want them to be (unless, of course, it just copied in the whole hierarchy). If you
setup an rsync daemon on a new area or locally add symlinks, you can manually protect your
symlinks from being abused by prefixing "/rsyncd-munged/" to the start of every symlink's value.
There is a perl script in the support directory of the source code named "munge-symlinks" that can
be used to add or remove this prefix from your symlinks.

 When this parameter is disabled on a writable module and "use chroot" is off (or the inside-
chroot path is not "/"), incoming symlinks will be modified to drop a leading slash and to remove
".." path elements that rsync believes will allow a symlink to escape the module's hierarchy. There

are tricky ways to work around this, though, so you had better trust your users if you choose this
combination of parameters.
charset

 This specifies the name of the character set in which the module's filenames are stored. If the
client uses an --iconv option, the daemon will use the value of the "charset" parameter regardless
of the character set the client actually passed. This allows the daemon to support charset
conversion in a chroot module without extra files in the chroot area, and also ensures that name-
translation is done in a consistent manner. If the "charset" parameter is not set, the --iconv option
is refused, just as if "iconv" had been specified via "refuse options".

 If you wish to force users to always use --iconv for a particular module, add "no-iconv" to the
"refuse options" parameter. Keep in mind that this will restrict access to your module to very new
rsync clients.
max connections

 This parameter allows you to specify the maximum number of simultaneous connections you will
allow. Any clients connecting when the maximum has been reached will receive a message telling
them to try later. The default is 0, which means no limit. A negative value disables the module. See
also the "lock file" parameter.
log file

 When the "log file" parameter is set to a non-empty string, the rsync daemon will log messages
to the indicated file rather than using syslog. This is particularly useful on systems (such as AIX)
where syslog() doesn't work for chrooted programs. The file is opened before chroot() is called,
allowing it to be placed outside the transfer. If this value is set on a per-module basis instead of
globally, the global log will still contain any authorization failures or config-file error messages.

 If the daemon fails to open the specified file, it will fall back to using syslog and output an error
about the failure. (Note that the failure to open the specified log file used to be a fatal error.)

 This setting can be overridden by using the --log-file=FILE or --dparam=logfile=FILE command-
line options. The former overrides all the log-file parameters of the daemon and all module
settings. The latter sets the daemon's log file and the default for all the modules, which still allows
modules to override the default setting.
syslog facility

 This parameter allows you to specify the syslog facility name to use when logging messages
from the rsync daemon. You may use any standard syslog facility name which is defined on your
system. Common names are auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news, security,
syslog, user, uucp, local0, local1, local2, local3, local4, local5, local6 and local7. The default is
daemon. This setting has no effect if the "log file" setting is a non-empty string (either set in the
per-modules settings, or inherited from the global settings).
syslog tag

 This parameter allows you to specify the syslog tag to use when logging messages from the
rsync daemon. The default is "rsyncd". This setting has no effect if the "log file" setting is a non-

empty string (either set in the per-modules settings, or inherited from the global settings).

 For example, if you wanted each authenticated user's name to be included in the syslog tag, you
could do something like this:

 syslog tag = rsyncd.%RSYNC_USER_NAME%

max verbosity

 This parameter allows you to control the maximum amount of verbose information that you'll
allow the daemon to generate (since the information goes into the log file). The default is 1, which
allows the client to request one level of verbosity.

 This also affects the user's ability to request higher levels of --info and --debug logging. If the
max value is 2, then no info and/or debug value that is higher than what would be set by -vv will be
honored by the daemon in its logging. To see how high of a verbosity level you need to accept for a
particular info/debug level, refer to rsync --info=help and rsync --debug=help. For instance, it takes
max-verbosity 4 to be able to output debug TIME2 and FLIST3.
lock file

 This parameter specifies the file to use to support the "max connections" parameter. The rsync
daemon uses record locking on this file to ensure that the max connections limit is not exceeded
for the modules sharing the lock file. The default is /var/run/rsyncd.lock.
read only

 This parameter determines whether clients will be able to upload files or not. If "read only" is
true then any attempted uploads will fail. If "read only" is false then uploads will be possible if file
permissions on the daemon side allow them. The default is for all modules to be read only.

 Note that "auth users" can override this setting on a per-user basis.
write only

 This parameter determines whether clients will be able to download files or not. If "write only" is
true then any attempted downloads will fail. If "write only" is false then downloads will be possible
if file permissions on the daemon side allow them. The default is for this parameter to be disabled.

 Helpful hint: you probably want to specify "refuse options = delete" for a write-only module.
open noatime

 When set to True, this parameter tells the rsync daemon to open files with the O_NOATIME flag
(on systems that support it) to avoid changing the access time of the files that are being
transferred. If your OS does not support the O_NOATIME flag then rsync will silently ignore this
option. Note also that some filesystems are mounted to avoid updating the atime on read access
even without the O_NOATIME flag being set.

 When set to False, this parameters ensures that files on the server are not opened with
O_NOATIME.

 When set to Unset (the default) the user controls the setting via --open-noatime.
list

 This parameter determines whether this module is listed when the client asks for a listing of
available modules. In addition, if this is false, the daemon will pretend the module does not exist
when a client denied by "hosts allow" or "hosts deny" attempts to access it. Realize that if "reverse
lookup" is disabled globally but enabled for the module, the resulting reverse lookup to a
potentially client-controlled DNS server may still reveal to the client that it hit an existing module.
The default is for modules to be listable.
uid

 This parameter specifies the user name or user ID that file transfers to and from that module
should take place as when the daemon was run as root. In combination with the "gid" parameter
this determines what file permissions are available. The default when run by a super-user is to
switch to the system's "nobody" user. The default for a non-super-user is to not try to change the
user. See also the "gid" parameter.

 The RSYNC_USER_NAME environment variable may be used to request that rsync run as the
authorizing user. For example, if you want a rsync to run as the same user that was received for
the rsync authentication, this setup is useful:

 uid = %RSYNC_USER_NAME%
 gid = *

gid

 This parameter specifies one or more group names/IDs that will be used when accessing the
module. The first one will be the default group, and any extra ones be set as supplemental groups.
You may also specify a "*" as the first gid in the list, which will be replaced by all the normal groups
for the transfer's user (see "uid"). The default when run by a super-user is to switch to your OS's
"nobody" (or perhaps "nogroup") group with no other supplementary groups. The default for a non-
super-user is to not change any group attributes (and indeed, your OS may not allow a non-super-
user to try to change their group settings).

 The specified list is normally split into tokens based on spaces and commas. However, if the list
starts with a comma, then the list is only split on commas, which allows a group name to contain a
space. In either case any leading and/or trailing whitespace is removed from the tokens and empty
tokens are ignored.
daemon uid

 This parameter specifies a uid under which the daemon will run. The daemon usually runs as
user root, and when this is left unset the user is left unchanged. See also the "uid" parameter.
daemon gid

 This parameter specifies a gid under which the daemon will run. The daemon usually runs as
group root, and when this is left unset, the group is left unchanged. See also the "gid" parameter.
fake super

 Setting "fake super = yes" for a module causes the daemon side to behave as if the --fake-super
command-line option had been specified. This allows the full attributes of a file to be stored without
having to have the daemon actually running as root.
filter

 The daemon has its own filter chain that determines what files it will let the client access. This
chain is not sent to the client and is independent of any filters the client may have specified. Files
excluded by the daemon filter chain (daemon-excluded files) are treated as non-existent if the
client tries to pull them, are skipped with an error message if the client tries to push them
(triggering exit code 23), and are never deleted from the module. You can use daemon filters to
prevent clients from downloading or tampering with private administrative files, such as files you
may add to support uid/gid name translations.

 The daemon filter chain is built from the "filter", "include from", "include", "exclude from", and
"exclude" parameters, in that order of priority. Anchored patterns are anchored at the root of the
module. To prevent access to an entire subtree, for example, "/secret", you must exclude
everything in the subtree; the easiest way to do this is with a triple-star pattern like "/secret/***".

 The "filter" parameter takes a space-separated list of daemon filter rules, though it is smart
enough to know not to split a token at an internal space in a rule (e.g. "- /foo - /bar" is parsed as
two rules). You may specify one or more merge-file rules using the normal syntax. Only one "filter"
parameter can apply to a given module in the config file, so put all the rules you want in a single
parameter. Note that per-directory merge-file rules do not provide as much protection as global
rules, but they can be used to make --delete work better during a client download operation if the
per-dir merge files are included in the transfer and the client requests that they be used.
exclude

 This parameter takes a space-separated list of daemon exclude patterns. As with the client --
exclude option, patterns can be qualified with "- " or "+ " to explicitly indicate exclude/include.
Only one "exclude" parameter can apply to a given module. See the "filter" parameter for a
description of how excluded files affect the daemon.
include

 Use an "include" to override the effects of the "exclude" parameter. Only one "include"
parameter can apply to a given module. See the "filter" parameter for a description of how
excluded files affect the daemon.
exclude from

 This parameter specifies the name of a file on the daemon that contains daemon exclude
patterns, one per line. Only one "exclude from" parameter can apply to a given module; if you have
multiple exclude-from files, you can specify them as a merge file in the "filter" parameter. See the
"filter" parameter for a description of how excluded files affect the daemon.
include from

 Analogue of "exclude from" for a file of daemon include patterns. Only one "include from"
parameter can apply to a given module. See the "filter" parameter for a description of how

excluded files affect the daemon.
incoming chmod

 This parameter allows you to specify a set of comma-separated chmod strings that will affect the
permissions of all incoming files (files that are being received by the daemon). These changes
happen after all other permission calculations, and this will even override destination-default
and/or existing permissions when the client does not specify --perms. See the description of the --
chmod rsync option and the chmod(1) manpage for information on the format of this string.
outgoing chmod

 This parameter allows you to specify a set of comma-separated chmod strings that will affect the
permissions of all outgoing files (files that are being sent out from the daemon). These changes
happen first, making the sent permissions appear to be different than those stored in the
filesystem itself. For instance, you could disable group write permissions on the server while having
it appear to be on to the clients. See the description of the --chmod rsync option and the chmod(1)
manpage for information on the format of this string.
auth users

 This parameter specifies a comma and/or space-separated list of authorization rules. In its
simplest form, you list the usernames that will be allowed to connect to this module. The
usernames do not need to exist on the local system. The rules may contain shell wildcard
characters that will be matched against the username provided by the client for authentication. If
"auth users" is set then the client will be challenged to supply a username and password to
connect to the module. A challenge response authentication protocol is used for this exchange. The
plain text usernames and passwords are stored in the file specified by the "secrets file" parameter.
The default is for all users to be able to connect without a password (this is called "anonymous
rsync").

 In addition to username matching, you can specify groupname matching via a '@' prefix. When
using groupname matching, the authenticating username must be a real user on the system, or it
will be assumed to be a member of no groups. For example, specifying "@rsync" will match the
authenticating user if the named user is a member of the rsync group.

 Finally, options may be specified after a colon (:). The options allow you to "deny" a user or a
group, set the access to "ro" (read-only), or set the access to "rw" (read/write). Setting an auth-
rule-specific ro/rw setting overrides the module's "read only" setting.

 Be sure to put the rules in the order you want them to be matched, because the checking stops
at the first matching user or group, and that is the only auth that is checked. For example:

 auth users = joe:deny @guest:deny admin:rw @rsync:ro susan joe sam

 In the above rule, user joe will be denied access no matter what. Any user that is in the group
"guest" is also denied access. The user "admin" gets access in read/write mode, but only if the
admin user is not in group "guest" (because the admin user-matching rule would never be reached
if the user is in group "guest"). Any other user who is in group "rsync" will get read-only access.
Finally, users susan, joe, and sam get the ro/rw setting of the module, but only if the user didn't

match an earlier group-matching rule.

 If you need to specify a user or group name with a space in it, start your list with a comma to
indicate that the list should only be split on commas (though leading and trailing whitespace will
also be removed, and empty entries are just ignored). For example:

 auth users = , joe:deny, @Some Group:deny, admin:rw, @RO Group:ro

 See the description of the secrets file for how you can have per-user passwords as well as per-
group passwords. It also explains how a user can authenticate using their user password or (when
applicable) a group password, depending on what rule is being authenticated.

 See also the section entitled "USING RSYNC-DAEMON FEATURES VIA A REMOTE SHELL
CONNECTION" in rsync(1) for information on how handle an rsyncd.conf-level username that differs
from the remote-shell-level username when using a remote shell to connect to an rsync daemon.
secrets file

 This parameter specifies the name of a file that contains the username:password and/or
@groupname:password pairs used for authenticating this module. This file is only consulted if the
"auth users" parameter is specified. The file is line-based and contains one name:password pair per
line. Any line has a hash (#) as the very first character on the line is considered a comment and is
skipped. The passwords can contain any characters but be warned that many operating systems
limit the length of passwords that can be typed at the client end, so you may find that passwords
longer than 8 characters don't work.

 The use of group-specific lines are only relevant when the module is being authorized using a
matching "@groupname" rule. When that happens, the user can be authorized via either their
"username:password" line or the "@groupname:password" line for the group that triggered the
authentication.

 It is up to you what kind of password entries you want to include, either users, groups, or both.
The use of group rules in "auth users" does not require that you specify a group password if you do
not want to use shared passwords.

 There is no default for the "secrets file" parameter, you must choose a name (such as
/etc/rsyncd.secrets). The file must normally not be readable by "other"; see "strict modes". If the
file is not found or is rejected, no logins for an "auth users" module will be possible.
strict modes

 This parameter determines whether or not the permissions on the secrets file will be checked. If
"strict modes" is true, then the secrets file must not be readable by any user ID other than the one
that the rsync daemon is running under. If "strict modes" is false, the check is not performed. The
default is true. This parameter was added to accommodate rsync running on the Windows
operating system.
hosts allow

 This parameter allows you to specify a list of comma- and/or whitespace-separated patterns that
are matched against a connecting client's hostname and IP address. If none of the patterns match,
then the connection is rejected.

 Each pattern can be in one of six forms:

 a dotted decimal IPv4 address of the form a.b.c.d, or an IPv6 address of the form a:b:c::d:e:f.
In this case the incoming machine's IP address must match exactly.
 an address/mask in the form ipaddr/n where ipaddr is the IP address and n is the number of
one bits in the netmask. All IP addresses which match the masked IP address will be allowed in.
 an address/mask in the form ipaddr/maskaddr where ipaddr is the IP address and maskaddr is
the netmask in dotted decimal notation for IPv4, or similar for IPv6, e.g. ffff:ffff:ffff:ffff:: instead of
/64. All IP addresses which match the masked IP address will be allowed in.
 a hostname pattern using wildcards. If the hostname of the connecting IP (as determined by a
reverse lookup) matches the wildcarded name (using the same rules as normal Unix filename
matching), the client is allowed in. This only works if "reverse lookup" is enabled (the default).
 a hostname. A plain hostname is matched against the reverse DNS of the connecting IP (if
"reverse lookup" is enabled), and/or the IP of the given hostname is matched against the
connecting IP (if "forward lookup" is enabled, as it is by default). Any match will be allowed in.
 an '@' followed by a netgroup name, which will match if the reverse DNS of the connecting IP
is in the specified netgroup.

 Note IPv6 link-local addresses can have a scope in the address specification:

 fe80::1%link1
 fe80::%link1/64
 fe80::%link1/ffff:ffff:ffff:ffff::

 You can also combine "hosts allow" with "hosts deny" as a way to add exceptions to your deny
list. When both parameters are specified, the "hosts allow" parameter is checked first and a match
results in the client being able to connect. A non-allowed host is then matched against the "hosts
deny" list to see if it should be rejected. A host that does not match either list is allowed to
connect.

 The default is no "hosts allow" parameter, which means all hosts can connect.
hosts deny

 This parameter allows you to specify a list of comma- and/or whitespace-separated patterns that
are matched against a connecting clients hostname and IP address. If the pattern matches then the
connection is rejected. See the "hosts allow" parameter for more information.

 The default is no "hosts deny" parameter, which means all hosts can connect.
reverse lookup

 Controls whether the daemon performs a reverse lookup on the client's IP address to determine
its hostname, which is used for "hosts allow" & "hosts deny" checks and the "%h" log escape. This
is enabled by default, but you may wish to disable it to save time if you know the lookup will not

return a useful result, in which case the daemon will use the name "UNDETERMINED" instead.

 If this parameter is enabled globally (even by default), rsync performs the lookup as soon as a
client connects, so disabling it for a module will not avoid the lookup. Thus, you probably want to
disable it globally and then enable it for modules that need the information.
forward lookup

 Controls whether the daemon performs a forward lookup on any hostname specified in an hosts
allow/deny setting. By default this is enabled, allowing the use of an explicit hostname that would
not be returned by reverse DNS of the connecting IP.
ignore errors

 This parameter tells rsyncd to ignore I/O errors on the daemon when deciding whether to run the
delete phase of the transfer. Normally rsync skips the --delete step if any I/O errors have occurred
in order to prevent disastrous deletion due to a temporary resource shortage or other I/O error. In
some cases this test is counter productive so you can use this parameter to turn off this behavior.
ignore nonreadable

 This tells the rsync daemon to completely ignore files that are not readable by the user. This is
useful for public archives that may have some non-readable files among the directories, and the
sysadmin doesn't want those files to be seen at all.
transfer logging

 This parameter enables per-file logging of downloads and uploads in a format somewhat similar
to that used by ftp daemons. The daemon always logs the transfer at the end, so if a transfer is
aborted, no mention will be made in the log file.

 If you want to customize the log lines, see the "log format" parameter.
log format

 This parameter allows you to specify the format used for logging file transfers when transfer
logging is enabled. The format is a text string containing embedded single-character escape
sequences prefixed with a percent (%) character. An optional numeric field width may also be
specified between the percent and the escape letter (e.g. "%-50n %8l %07p"). In addition, one or
more apostrophes may be specified prior to a numerical escape to indicate that the numerical
value should be made more human-readable. The 3 supported levels are the same as for the --
human-readable command-line option, though the default is for human-readability to be off. Each
added apostrophe increases the level (e.g. "%''l %'b %f").

 The default log format is "%o %h [%a] %m (%u) %f %l", and a "%t [%p] " is always prefixed
when using the "log file" parameter. (A perl script that will summarize this default log format is
included in the rsync source code distribution in the "support" subdirectory: rsyncstats.)

 The single-character escapes that are understood are as follows:

 %a the remote IP address (only available for a daemon)
 %b the number of bytes actually transferred

 %B the permission bits of the file (e.g. rwxrwxrwt)
 %c the total size of the block checksums received for the basis file (only when sending)
 %C the full-file checksum if it is known for the file. For older rsync protocols/versions, the
checksum was salted, and is thus not a useful value (and is not displayed when that is the case).
For the checksum to output for a file, either the --checksum option must be in-effect or the file
must have been transferred without a salted checksum being used. See the --checksum-choice
option for a way to choose the algorithm.
 %f the filename (long form on sender; no trailing "/")
 %G the gid of the file (decimal) or "DEFAULT"
 %h the remote host name (only available for a daemon)
 %i an itemized list of what is being updated
 %l the length of the file in bytes
 %L the string " -> SYMLINK", " => HARDLINK", or "" (where SYMLINK or HARDLINK is a
filename)
 %m the module name
 %M the last-modified time of the file
 %n the filename (short form; trailing "/" on dir)
 %o the operation, which is "send", "recv", or "del." (the latter includes the trailing period)
 %p the process ID of this rsync session
 %P the module path
 %t the current date time
 %u the authenticated username or an empty string
 %U the uid of the file (decimal)

 For a list of what the characters mean that are output by "%i", see the --itemize-changes option
in the rsync manpage.

 Note that some of the logged output changes when talking with older rsync versions. For
instance, deleted files were only output as verbose messages prior to rsync 2.6.4.
timeout

 This parameter allows you to override the clients choice for I/O timeout for this module. Using
this parameter you can ensure that rsync won't wait on a dead client forever. The timeout is
specified in seconds. A value of zero means no timeout and is the default. A good choice for
anonymous rsync daemons may be 600 (giving a 10 minute timeout).
refuse options

 This parameter allows you to specify a space-separated list of rsync command-line options that
will be refused by your rsync daemon. You may specify the full option name, its one-letter
abbreviation, or a wild-card string that matches multiple options. Beginning in 3.2.0, you can also
negate a match term by starting it with a "!".

 When an option is refused, the daemon prints an error message and exits.

 For example, this would refuse --checksum (-c) and all the various delete options:

 refuse options = c delete

 The reason the above refuses all delete options is that the options imply --delete, and implied
options are refused just like explicit options.

 The use of a negated match allows you to fine-tune your refusals after a wild-card, such as this:

 refuse options = delete-* !delete-during

 Negated matching can also turn your list of refused options into a list of accepted options. To do
this, begin the list with a "*" (to refuse all options) and then specify one or more negated matches
to accept. For example:

 refuse options = * !a !v !compress*

 Don't worry that the "*" will refuse certain vital options such as --dry-run, --server, --no-iconv, --
seclude-args, etc. These important options are not matched by wild-card, so they must be
overridden by their exact name. For instance, if you're forcing iconv transfers you could use
something like this:

 refuse options = * no-iconv !a !v

 As an additional aid (beginning in 3.2.0), refusing (or "!refusing") the "a" or "archive" option also
affects all the options that the --archive option implies (-rdlptgoD), but only if the option is matched
explicitly (not using a wildcard). If you want to do something tricky, you can use "archive*" to avoid
this side-effect, but keep in mind that no normal rsync client ever sends the actual archive option
to the server.

 As an additional safety feature, the refusal of "delete" also refuses remove-source-files when the
daemon is the sender; if you want the latter without the former, instead refuse "delete-*" as that
refuses all the delete modes without affecting --remove-source-files. (Keep in mind that the client's
--delete option typically results in --delete-during.)

 When un-refusing delete options, you should either specify "!delete*" (to accept all delete
options) or specify a limited set that includes "delete", such as:

 refuse options = * !a !delete !delete-during

 ... whereas this accepts any delete option except --delete-after:

 refuse options = * !a !delete* delete-after

 A note on refusing "compress": it may be better to set the "dont compress" daemon parameter
to "*" and ensure that RSYNC_COMPRESS_LIST=zlib is set in the environment of the daemon in
order to disable compression silently instead of returning an error that forces the client to remove
the -z option.

 If you are un-refusing the compress option, you may want to match "!compress*" if you also
want to allow the --compress-level option.

 Note that the "copy-devices" & "write-devices" options are refused by default, but they can be
explicitly accepted with "!copy-devices" and/or "!write-devices". The options "log-file" and "log-file-
format" are forcibly refused and cannot be accepted.

 Here are all the options that are not matched by wild-cards:

 --server: Required for rsync to even work.
 --rsh, -e: Required to convey compatibility flags to the server.
 --out-format: This is required to convey output behavior to a remote receiver. While rsync
passes the older alias --log-format for compatibility reasons, this options should not be confused
with --log-file-format.
 --sender: Use "write only" parameter instead of refusing this.
 --dry-run, -n: Who would want to disable this?
 --seclude-args, -s: Is the oldest arg-protection method.
 --from0, -0: Makes it easier to accept/refuse --files-from without affecting this helpful modifier.
 --iconv: This is auto-disabled based on "charset" parameter.
 --no-iconv: Most transfers use this option.
 --checksum-seed: Is a fairly rare, safe option.
 --write-devices: Is non-wild but also auto-disabled.

dont compress

 NOTE: This parameter currently has no effect except in one instance: if it is set to "*" then it
minimizes or disables compression for all files (for those that don't want to refuse the --compress
option completely).

 This parameter allows you to select filenames based on wildcard patterns that should not be
compressed when pulling files from the daemon (no analogous parameter exists to govern the
pushing of files to a daemon). Compression can be expensive in terms of CPU usage, so it is usually
good to not try to compress files that won't compress well, such as already compressed files.

 The "dont compress" parameter takes a space-separated list of case-insensitive wildcard
patterns. Any source filename matching one of the patterns will be compressed as little as possible
during the transfer. If the compression algorithm has an "off" level, then no compression occurs for
those files. If an algorithms has the ability to change the level in mid-stream, it will be minimized to
reduce the CPU usage as much as possible.

 See the --skip-compress parameter in the rsync(1) manpage for the list of file suffixes that are
skipped by default if this parameter is not set.
early exec, pre-xfer exec, post-xfer exec

 You may specify a command to be run in the early stages of the connection, or right before
and/or after the transfer. If the early exec or pre-xfer exec command returns an error code, the
transfer is aborted before it begins. Any output from the pre-xfer exec command on stdout (up to

several KB) will be displayed to the user when aborting, but is not displayed if the script returns
success. The other programs cannot send any text to the user. All output except for the pre-xfer
exec stdout goes to the corresponding daemon's stdout/stderr, which is typically discarded. See
the --no-detatch option for a way to see the daemon's output, which can assist with debugging.

 Note that the early exec command runs before any part of the transfer request is known except
for the module name. This helper script can be used to setup a disk mount or decrypt some data
into a module dir, but you may need to use lock file and max connections to avoid concurrency
issues. If the client rsync specified the --early-input=FILE option, it can send up to about 5K of data
to the stdin of the early script. The stdin will otherwise be empty.

 Note that the post-xfer exec command is still run even if one of the other scripts returns an error
code. The pre-xfer exec command will not be run, however, if the early exec command fails.

 The following environment variables will be set, though some are specific to the pre-xfer or the
post-xfer environment:

 RSYNC_MODULE_NAME: The name of the module being accessed.
 RSYNC_MODULE_PATH: The path configured for the module.
 RSYNC_HOST_ADDR: The accessing host's IP address.
 RSYNC_HOST_NAME: The accessing host's name.
 RSYNC_USER_NAME: The accessing user's name (empty if no user).
 RSYNC_PID: A unique number for this transfer.
 RSYNC_REQUEST: (pre-xfer only) The module/path info specified by the user. Note that the
user can specify multiple source files, so the request can be something like "mod/path1
mod/path2", etc.
 RSYNC_ARG#: (pre-xfer only) The pre-request arguments are set in these numbered values.
RSYNC_ARG0 is always "rsyncd", followed by the options that were used in RSYNC_ARG1, and so
on. There will be a value of "." indicating that the options are done and the path args are beginning
-⁠-⁠ these contain similar information to RSYNC_REQUEST, but with values separated and the module
name stripped off.
 RSYNC_EXIT_STATUS: (post-xfer only) the server side's exit value. This will be 0 for a
successful run, a positive value for an error that the server generated, or a -⁠1 if rsync failed to exit
properly. Note that an error that occurs on the client side does not currently get sent to the server
side, so this is not the final exit status for the whole transfer.
 RSYNC_RAW_STATUS: (post-xfer only) the raw exit value from waitpid().

 Even though the commands can be associated with a particular module, they are run using the
permissions of the user that started the daemon (not the module's uid/gid setting) without any
chroot restrictions.

 These settings honor 2 environment variables: use RSYNC_SHELL to set a shell to use when
running the command (which otherwise uses your system() call's default shell), and use
RSYNC_NO_XFER_EXEC to disable both options completely.

CONFIG DIRECTIVES

There are currently two config directives available that allow a config file to incorporate the
contents of other files: &include and &merge. Both allow a reference to either a file or a directory.
They differ in how segregated the file's contents are considered to be.

The &include directive treats each file as more distinct, with each one inheriting the defaults of the
parent file, starting the parameter parsing as globals/defaults, and leaving the defaults unchanged
for the parsing of the rest of the parent file.

The &merge directive, on the other hand, treats the file's contents as if it were simply inserted in
place of the directive, and thus it can set parameters in a module started in another file, can affect
the defaults for other files, etc.

When an &include or &merge directive refers to a directory, it will read in all the *.conf or *.inc files
(respectively) that are contained inside that directory (without any recursive scanning), with the
files sorted into alpha order. So, if you have a directory named "rsyncd.d" with the files "foo.conf",
"bar.conf", and "baz.conf" inside it, this directive:

 &include /path/rsyncd.d

would be the same as this set of directives:

 &include /path/rsyncd.d/bar.conf
 &include /path/rsyncd.d/baz.conf
 &include /path/rsyncd.d/foo.conf

except that it adjusts as files are added and removed from the directory.

The advantage of the &include directive is that you can define one or more modules in a separate
file without worrying about unintended side-effects between the self-contained module files.

The advantage of the &merge directive is that you can load config snippets that can be included
into multiple module definitions, and you can also set global values that will affect connections
(such as motd file), or globals that will affect other include files.

For example, this is a useful /etc/rsyncd.conf file:

 port = 873
 log file = /var/log/rsync.log
 pid file = /var/lock/rsync.lock

 &merge /etc/rsyncd.d
 &include /etc/rsyncd.d

This would merge any /etc/rsyncd.d/*.inc files (for global values that should stay in effect), and
then include any /etc/rsyncd.d/*.conf files (defining modules without any global-value cross-talk).
AUTHENTICATION STRENGTH

The authentication protocol used in rsync is a 128 bit MD4 based challenge response system. This
is fairly weak protection, though (with at least one brute-force hash-finding algorithm publicly
available), so if you want really top-quality security, then I recommend that you run rsync over ssh.
(Yes, a future version of rsync will switch over to a stronger hashing method.)

Also note that the rsync daemon protocol does not currently provide any encryption of the data
that is transferred over the connection. Only authentication is provided. Use ssh as the transport if
you want encryption.

You can also make use of SSL/TLS encryption if you put rsync behind an SSL proxy.
SSL/TLS Daemon Setup

When setting up an rsync daemon for access via SSL/TLS, you will need to configure a TCP proxy
(such as haproxy or nginx) as the front-end that handles the encryption.

 You should limit the access to the backend-rsyncd port to only allow the proxy to connect. If it is
on the same host as the proxy, then configuring it to only listen on localhost is a good idea.
 You should consider turning on the proxy protocol rsync-daemon parameter if your proxy
supports sending that information. The examples below assume that this is enabled.

An example haproxy setup is as follows:

 frontend fe_rsync-ssl
 bind :::874 ssl crt /etc/letsencrypt/example.com/combined.pem
 mode tcp
 use_backend be_rsync

 backend be_rsync
 mode tcp
 server local-rsync 127.0.0.1:873 check send-proxy

An example nginx proxy setup is as follows:

 stream {
 server {
 listen 874 ssl;
 listen [::]:874 ssl;

 ssl_certificate /etc/letsencrypt/example.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/example.com/privkey.pem;

 proxy_pass localhost:873;
 proxy_protocol on; # Requires rsyncd.conf "proxy protocol = true"
 proxy_timeout 1m;
 proxy_connect_timeout 5s;
 }
 }

DAEMON CONFIG EXAMPLES

A simple rsyncd.conf file that allow anonymous rsync to a ftp area at /home/ftp would be:

 [ftp]
 path = /home/ftp
 comment = ftp export area

A more sophisticated example would be:

 uid = nobody
 gid = nobody
 use chroot = yes
 max connections = 4
 syslog facility = local5
 pid file = /var/run/rsyncd.pid

 [ftp]
 path = /var/ftp/./pub
 comment = whole ftp area (approx 6.1 GB)

 [sambaftp]
 path = /var/ftp/./pub/samba
 comment = Samba ftp area (approx 300 MB)

 [rsyncftp]
 path = /var/ftp/./pub/rsync
 comment = rsync ftp area (approx 6 MB)

 [sambawww]
 path = /public_html/samba
 comment = Samba WWW pages (approx 240 MB)

 [cvs]
 path = /data/cvs
 comment = CVS repository (requires authentication)
 auth users = tridge, susan
 secrets file = /etc/rsyncd.secrets

The /etc/rsyncd.secrets file would look something like this:

 tridge:mypass
 susan:herpass

Revision #1
Created 19 January 2024 08:44:09 by 고기만두 (MeatDumpling)

Updated 19 January 2024 10:43:03 by 고기만두 (MeatDumpling)

